この記事は 『CRESCO Advent Calendar 2018』21日目の記事です。

はじめまして。ディープラーニングに取り組んでいるシニア㊥です。本日は、CNNを用いた超解像について、触れてみたいと思います。

CNNの超解像て何?

4K、8K対応のテレビ放送が12月から開始されました。ラグビー・ワールドカップや東京オリンピックを超高画質な映像でテレビ観戦できると良いですね。

さて、画像処理では超解像と呼ばれる分野があります。画像を拡大する際、ボケやジャギーといった画像の劣化が生じてしまうことがありませんか。これは、元の画像に含まれる画素を利用した補完アルゴリズを使っているからです。そこで、補完ではなく元の画像に含まれない高周波成分を推定することで解像度を向上させる手法が生まれました。これを超解像と呼びます。

そのようななか、2014年にC.Dong氏(※1)らは畳み込みニューラルネットワーク(CNN)を用いた超解像を発表しました。Super-Resolution Convolution Neural Network(SRCNN)は、入力と出力の画像再現性をend-to-endで機械学習させるものです。これを機に、CNNを使った様々な超解像のモデルが発表されています。
※1:Image Super-Resolution Using Deep Convolutional Networks

続きを読む