機械学習

数学セミナーを実施しました (2)

技術研究所のまつけんです。前回に引き続き、2月25日に開催した数学セミナーのレポートをさせていただきたいと思います。

第2部「超入門! 今日から機械学習の教科書を読めるようになる」では、機械学習の勉強をしようと思ったときに出てくる初歩的な数式について解説しました。「住宅のスペックからその住宅の価格を推定するAIを作るとしたら?」という例題:

を用いて、ベクトル・行列、最適化、微分(偏微分)について学習する内容でした。

続きを読む


「AI ってなんだ」

技術研究所の (あ) です。
この一年くらいで、社内外のいろいろな方々向けに眼科画像と機械学習の話をさせていただく機会がいくつかありました。長めの話をする場合には、「そもそも機械学習とか AI (人工知能) ってなぁに?」というあたりから話を始めます。

先日もそのあたりに関する話が社内報向けの Q&A形式の記事になったのですが、紙面も限られていて削った部分もありました。せっかくなのでそれをベースに、新たに内容も追加してブログ記事にしてみました。

続きを読む


技術研究所 オープンハウス2019 に来てみませんか?

◇◇◇ 参加登録は本記事最後のリンクからどうぞ ◇◇◇

こんにちは 技術研究所の101です。

3月に開催される当技術研究所の研究発表会「オープンハウス2019」の開催告知をさせて頂きます。
昨年に引き続き、今年も一般の方へもオープンなイベントとして開催します。
(昨年の様子はこちらをご参照ください。)

オープンハウスとは、
研究内容と成果を多くの方に知っていただくために、研究所を一般公開するイベントです。

続きを読む


CNNを用いた超解像を試しました

この記事は 『CRESCO Advent Calendar 2018』21日目の記事です。

はじめまして。ディープラーニングに取り組んでいるシニア㊥です。本日は、CNNを用いた超解像について、触れてみたいと思います。

CNNの超解像て何?

4K、8K対応のテレビ放送が12月から開始されました。ラグビー・ワールドカップや東京オリンピックを超高画質な映像でテレビ観戦できると良いですね。

さて、画像処理では超解像と呼ばれる分野があります。画像を拡大する際、ボケやジャギーといった画像の劣化が生じてしまうことがありませんか。これは、元の画像に含まれる画素を利用した補完アルゴリズを使っているからです。そこで、補完ではなく元の画像に含まれない高周波成分を推定することで解像度を向上させる手法が生まれました。これを超解像と呼びます。

そのようななか、2014年にC.Dong氏(※1)らは畳み込みニューラルネットワーク(CNN)を用いた超解像を発表しました。Super-Resolution Convolution Neural Network(SRCNN)は、入力と出力の画像再現性をend-to-endで機械学習させるものです。これを機に、CNNを使った様々な超解像のモデルが発表されています。
※1:Image Super-Resolution Using Deep Convolutional Networks

続きを読む


めざせ!『人工知能』エンジニア

こんにちは。先端技術事業部の高津です。

この記事は 『CRESCO Advent Calendar 2018』 4日目の記事です。
最近はAdvent Calendarでしか皆さんとお会いしないのがちょっと寂しいですね。
自分のせいなんですが 笑

さて、昨今巷で話題の人工知能ですが、クレスコでもサービスAIの代表ともいえるWatsonからPythonによるモデル構築まで幅広く人工知能に対応できる体制を築いています。
これまでにもいろいろなコンテンツを利用して育成を進めてきましたが、私を含めてエンジニアの皆さんが「人工知能」エンジニアになるため、最初の学習のために役立ちそうな情報を共有してみたいと思います。

続きを読む


感度とか特異度とか

技術研究所の(あ)です。
機械学習を用いた眼科画像からの疾患の有無の判断とかやってます。こういうもの (画像からの判断だけでなく、インフルエンザの検査とかでも同じです) の性能を評価しようとするとき、いろいろな指標の用語が出てきます。

感度、特異度、精度、再現率、適合度、などなど…

何がどう違うのでしょう? 何でたくさんあるのでしょう?
もちろん本やウェブで調べれば出てきますが、意外とすっきり簡潔に解りやすくまとめた資料がありません。いろいろな人に説明せねばならない機会も増えたし、それではということで自分で説明図などを作ってみました。

続きを読む


技術セミナー“AIのビジネス活用”@琉球大学 レポ

こんにちは、産学連携担当の まるやまひさし です。

先日、琉球大学の学内で技術セミナーを開催してきました。その様子をレポします。


琉球大学はの敷地はとても広大。
なんと国立大学としては全国4番目の広さ。
この峡谷のような谷と池、これが敷地内にあるんです。

続きを読む


venvで作った仮想環境で、TensorFlowのObject Detection APIを試してみた(学習 ~ 検出迄)

こんにちは。技術研究所の910です。
今回は少々今更感がありますが、TensorFlowに実装されたTensorFlow Object Detection APIを試してみようと思います。

…とは言ったものの、How to train your own Object Detector with TensorFlow’s Object Detector APIに丁寧に手順がまとめられていますので、詳細なやり方についてはこちらの記事をご覧になるのが良いかと思います。
なのでこの記事では、このAPIを使うことで、どれだけ簡単に物体検出を試せるのかをご覧いただければと思います。

作業環境

続きを読む


すごいぞ!Neural Network Console!

こんにちは。技術研究所のわたなべです。

機械学習初級者の私に強い味方が登場してくれたようなのでご紹介します。

Neural Network Consoleとは?

去る8/17、こんなニュースが飛び込んできました。

人工知能(AI)を実現するディープラーニング(深層学習)の統合開発環境Neural Network Consoleを公開

これまでディープラーニング使ってみよう!という場合、ほぼPythonプログラミングというような雰囲気でしたが、ディープラーニング用の統合開発環境と銘打たれたものが出てきました。

しばらく使ってみたのですが、こいつがなかなかどうしてイケてる感じでした!

続きを読む


Python3でCaffeの環境構築をやってみた

技術研究所のYKです。 今回、新たにGPU環境を構築する必要が生じたので、そのついでにPython3でのCaffe環境構築を試してみました。 以前もCaffeの環境構築を行いましたが、その時には、情報がより多く出回っているという理由からPython2.7を使用して環境構築を行いました。
しかし、普段の業務やプライベートではPython3系を使っている為、どうせならPython3系を使ってやってみよう!と思い立ったのがキッカケです。 Python2.7での環境構築では手間取らなかったようなところで手間取ったので、(私自身の備忘の為にも)試行錯誤した結果をメモしておきます。

続きを読む